Random Number Information
(Click to generate some Random Numbers)
The Nature of Randomness
Certain natural events are believed (by most physicists) to be completely random. An oftenquoted
example of such an event is the spontaneous decay of a radioactive atom: there is no way that
one can predict the time when such an event will occur, and so the time between two consecutive clicks
on a Geiger counter is to all intents and purposes truly random.
The randomness of other, more everyday, events may be harder to determine. Take the example of flipping
a coin. It is generally accepted that the result  heads or tails  is random, but what would happen if
the coin was poorly flipped so that it is possible to watch it spinning in the air? If we knew the
initial orientation of the coin then we could count the number of times it turned before being caught,
and so we could predict the outcome of the flip. We would no longer call it a random event. If we had
fast enough reflexes then perhaps we could watch any coinflip and predict the outcome accurately 
certainly it's possible to imagine a machine which could do something like this.
So, is flipping a coin
a random event? It really depends on the definition of the word 'random'. If we take it to mean that
the outcome is theoretically unpredictable then no, the coin flip is not random. But in the
real world it is practically impossible to predict the outcome of a good flip, so in that
respect we can call it a random event.
Lotteries and Butterflies
Similarly the tumbling balls inside a Lotto machine all obey the laws of physics so in theory it should
be possible to predict the lottery numbers given the initial starting positions of all the balls and a
precise description of their physical properties. But in practice we can never know these values with
sufficient accuracy, and even a tiny discrepancy in the initial conditions will lead to a huge variation
in the outcome  making it impossible to predict the lottery numbers that will be drawn by the machine.
In the field of weather forecasting this potential for a massive change in outcome for a miniscule
difference in the starting conditions is often known as the 'butterfly effect', from the observation
that a butterfly flapping its wings in South America might ultimately alter the course of a storm in
Florida!
Chaos out of Order
Often it is very useful to have a computer generate a series of random numbers  they can be used to
test the behavior of computer simulations, or to create unpredictable events (such as
the motion of an enemy in a game). However a computer is an inherently predictable machine, so how
can it be used to generate random numbers? The solution is to produce numbers which are predictable
to the computer, but which behave as though they were random  rather like the coinflipping
experiment.
Typically one of the required characteristics of a random number generator is that all numbers within a
given range are equally likely. This behavior could be achieved if we listed all the numbers in the
range, then shuffled the list and returned the numbers in the new sequence. Each number would be
guaranteed to appear exactly once, so all would be equally likely, and if the shuffling was performed
well enough then it would be practically impossible to predict one number from the next.
It turns out that there are certain relatively simple mathematical operations which will effectively
step through all the numbers in certain ranges in a 'shuffled' order, visiting each number exactly once.
Such sequences of numbers are sometimes called 'pseudorandom', since the sequence is in fact predictable
but has many characteristics in common with a truly random sequence.
An Example  the LCG
The family of formulae most commonly used to generate pseudorandom numbers are known as 'Linear Congruential
Generators' (LCGs). These have the property that each number in the sequence is derived from the previous one
by multiplying it by a suitable number a, adding an offset b, and taking
the result modulo n. (Modulo n means the remainder after dividing by n.
For values of n which are a power of 2, this is a very easy operation for computers.)
Let's take an example, using a=4, b=5, and n=9. Then if we start with the number 0, our second number is:
(0 x 4) + 5 modulo 9 = 5.
The third number is:
(5 x 4) + 5 modulo 9 = 7 (because 20+5=25, and 25/9 is 2 remainder 7)
The fourth number is:
(7 x 4) + 5 modulo 9 = 6
The complete sequence is:
0, 5, 7, 6, 2, 4, 3, 8, 1, 0, 5, 7, 6...
We can see that this sequence works through all the numbers from 0 to 8, in its particular shuffled
order, before repeating.
Not all choices of a, b and n produce sequences which include
all the values from 0 to n  there is an art to
choosing suitable values. Try manually calculating the sequence using a=5, b=3, and n=9  you will find
there are four distinct 'subsequences' generated, depending on the starting value.
Using a bigger value of n will make it possible to produce sequences
that run for longer before repeating  although the corresponding a and b values need
to be chosen carefully in order to produce maximal length sequences.
A feature of LCGs is that the lower (rightmost) digits tend to be
'less random' than the higher digits. To avoid this problem, it is good practice to use only the higher
digits of the generated values, since there will then be less correlation between successive values.
In Use
Typical values used in a 'real' LCG are:
a=1664525, b=1013904223, n=2^{32}=4294967296
which cycles through all possible 32bit numbers, and has the advantage that the modulo operation
happens automatically on most computers. The first few values in this sequence are:
1013904223, 3442648290, 4022689497, 1349532260,
3173630579, 2017633590, 132832029, 2625544664
It can be seen that these numbers alternate  odd, even, odd, even, odd...  which is an example of the
nonrandomness of the lower digits. Using higher digits from these numbers would remove this pattern.
There are many refinements to the LCG  for example a variant which stores the last few values and returns
them in a shuffled order, or another variant which combines two LCGs with different repeat periods to
produce a third sequence with a much longer period than either of the original sequences.
There are also other pseudorandom generators based
on shift registers, which are useful for producing a stream of single binary random 'bits'. However the
LCG is by far the most popular method for generating pseudorandom sequences and is found in virtually
all computer languages.
